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Elliptic Curves

An elliptic curve is a set of points satisfying an equation of the form

y 2 = x3 + ax + b

for coefficients a, b and variables x , y in some field F (of characteristic not
2 or 3). This type of equation is a Weierstrass equation, which is a
condensed form of a general cubic equation. One additional restriction is
placed on an elliptic curve, which is that 4a3 + 27b2 6= 0. This condition
ensures that the curve is non-singular, which allows us to find a tangent
line to any point on the curve.
Figure 1 shows two simple elliptic curves.

Figure 1: The elliptic curves y 2 = x3 − 3x + 1 and y 2 = x3 − 2x + 2

The Group Law

Define the set of points on the curve as

C = {(x , y) | x , y ∈ F and y 2 = x3 + ax + b} ∪∞
where ∞ is the point at infinity in the projective plane.
There is an operation + which allows the composition of any two points
on the curve. Figure 2 shows the geometric application of this operation.

Figure 2: The + operation for two points on an elliptic curve

To add two points together, take the line between them and find its third
point of intersection with the curve, then reflect across the x-axis. To add
a point to itself, use the tangent line. The identity of + is∞. The inverse
of a point is its reflection across the x-axis.
From the geometric definition, it is possible to derive an algebraic formula
for the + operation by finding the equation of the line, and solving the
resulting system of equations.

The Discrete Logarithm Problem

Given a group G with operation ∗ we can define a map · : Z× G → G by

n · g 7→ g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

On an elliptic curve, the map · is equal to the repeated addition of a point
to itself. We call this map point multiplication. For a point P on C ,
nP = P + P + · · · + P . If we have two points P ,Q on C where nP = Q,
then n is the elliptic-curve discrete logarithm (ECDL) of Q with respect to
P .
Point multiplication is an example of a trap-door function: a function
which is simple to compute in one direction but difficult to compute in the
other direction. This is the exact operation we will use to construct a
cryptosystem.

Naive Multiplication
If an attacker knows P and nP , where N is the order of C , then they can
solve the discrete logarithm problem by testing if mP = nP for each m,
1 ≤ m < N . This is the simplest solution to the ECDL, and will complete
in O(NM) time, where M is the cost of an elliptic curve multiplication.
For small curves, a computer performing naive multiplication will quickly
solve this problem. However, there is no known algorithm which feasibly
solves the ECDL on a generic cryptographic curve. This problem, known
as the Elliptic Curve Discrete Logarithm Problem (ECDLP), is what
elliptic curve cryptography is based on. Generic attacks against the
ECDLP all have complexity which is a function of the order of the curve,
so cryptographic curves are picked such that their order is very large:
more than 2200.

Baby-Step Giant-Step
The Baby-Step Giant-Step algorithm rewrites the point Q = nP as
(im + j)P , with m = d

√
Ne. Then jP is computed for 0 ≤ j < m and

stored. Finally, naive multiplication is used to find imP for 0 ≤ i < m,
and subtracted from nP to solve for jP .

Baby-Step Giant-Step for ECDLP

m←
√
N

for 0 ≤ j < m do
Compute and store (j , jP)

end for
for 0 ≤ i < m do

Compute Q − imP
if Q − imP = jP for some j then

return n ≡ j + im
end if

end for

Baby-Step Giant-Step completes in O(
√
NM) time and O(

√
N) space

complexity. This is a large improvement over naive multiplication, but still
very slow on cryptographic curves.

Elliptic Curve Diffie-Hellman Exchange

One of the major problems of pre-modern cryptography was that every
method of communication required a shared key. This problem is called
the key distribution problem. Essentially, if two parties wanted to
communicate they needed to meet and exchange a key - there was no way
to communicate over an insecure channel without first communicating
over a secure channel. The Elliptic Curve Diffie-Hellman Key Exchange
(ECDHE) is a method of key derivation which allows two users to derive a
shared key over an insecure channel.

Elliptic Curve Diffie-Hellman Exchange

1. Alice and Bob agree on a curve C and a generating point P . (In
practice, these parameters are standardized and known to
everyone.)

2. Alice generates a random, secret integer a and sends Bob aP .

3. Bob generates a random, secret integer b and sends Alica bP .

4. Alice computes a(bP).

5. Bob computes b(aP).

6. Alice and Bob now share the key abP .

Elliptic Curve Point Multiplication

Point multiplications is one component of Elliptic Curve Cryptography
which is very important in practice. Consider the computation of nP for a
point P and integer n. Naive multiplication by repeated addition is very
slow (exponential). The Double-and-Add algorithm computes nP by
looping through the bits of n, adding on a 1 bit and doubling on a 0 or 1
bit.
Double-and-Add is much faster than repeated addition, but it leaks
information about n by performing a different number of operations based
on the binary representation. This information leakage makes an
implementation which uses Double-and-Add vulnerable to timing or power
analysis. A real-world implementation of ECDHE will use the Montgomery
Ladder, which operates in constant time.

Implementation of ECDHE on Curve25519

The result of my research is a pedagogical implementation of the
Elliptic-Curve Diffie-Hellman Exchange, using Bernstein’s Curve25519.
Curve25519 is an elliptic curve in Montgomery form, over the prime field
Zp where p = 2255 − 19.

# Create ECDH users alice and bob

a = ECDH::User.new(’alice’)

b = ECDH::User.new(’bob’)

# alice initiates DH exchange with bob

a.negotiate(b)

# alice and bob now have a shared secret key

a.keys[’bob’] == b.keys[’alice’] # true
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